Categories
can’t infrastructure

Our infrastructure can’t handle climate disasters. We need to build differently.

Heat waves that buckle streets. Flash floods that wipe out entire towns. Wildfires that create their own weather. Even for the most plugged-in scientists, this summer’s climate disasters have come as a shock. Experts who study the climate have been ringing the alarm bells for years about the relationship between global warming and extreme weather,…

Heat waves that buckle streets. Flash floods that wipe out entire towns. Wildfires that create their own weather. Even for the most plugged-in scientists, this summer’s climate disasters have come as a shock. Experts who study the climate have been ringing the alarm bells for years about the relationship between global warming and extreme weather, but each new catastrophe still seems to catch us off guard. Our homes, streets, and power grids aren’t prepared.

Why are we so unprepared for these disasters, and what can we do to protect ourselves from them in the future? The answer lies as much in the built environment as in the atmosphere. The cityscapes and towns we live in were designed for an era of weaker and more predictable weather, and now, as warming ratchets up Mother Nature’s intensity, the artificial infrastructure around us is falling apart at the seams. 

The solution to this infrastructure catastrophe, meanwhile, is far from simple: in some cases, we may be able to retrofit our cities for an era of climate chaos, but in other places the only option will be to retreat to safer ground.

That’s because the key thing about natural disasters is that there is no such thing. What we call a “disaster” occurs when a natural force collides with a man-made environment, but there is nothing disastrous about environmental forces as such. We view phenomena like rain and fire as harmful because we’ve built houses and streets that are vulnerable to their impacts, but they were around long before we were.

As construction technology took massive leaps over the course of the nineteenth and twentieth centuries, developed countries like the United States tended to forget that crucial fact. We adopted an attitude of dominance over nature, reframing the ecosystem as something that could be tamed and bent to our will—“Pridefully, man acclaims his conquest of nature,” boasted former Interior secretary Harold Ikces at the 1935 dedication of the Hoover Dam. 

We can see the marks of this prideful conquest all over the United States, from California to Florida. In the West, for instance, the federal government pursued a policy of total fire suppression for decades, but didn’t realize that stamping out small blazes would cause ample flammable material to pile up on forest floors. Millions of people moved to the desert and tapped the serpentine Colorado River for their drinking water, but no one considered what would happen if a drought caused that river to run dry. Real estate developers erected large condo buildings on the sinking barrier island of Miami Beach, but didn’t think through how those buildings would stand up to decades of rain and salty air.

It’s not as though the people who designed this infrastructure were unaware that weather existed, of course.

“If you talk to any civil engineer, you’ll understand that climate is directly brought in, during any infrastructure design,” says Vivek Shandas, a professor who studies climate change and urban planning at Portland State University in Oregon. “We design things for a specific amount of water to move [through them], or for a threshold of maximum temperatures.” 

[Related: What extreme heat means for the future of the Summer Olympics]

The problem, says Shandas, is that now the numbers are changing—cities are seeing more intense rain events than they once did, and heat waves are breaking climate models. The calculations that engineers used when they designed our infrastructure no longer apply to the post-climate era.

This gap between expectations and reality was all too visible in New York City last month, when the remnants of Tropical Storm Elsa dumped three inches of rain on the city and flooded the subway system. The underground stations were designed to pump out invasive water twenty-four hours a day, but the drainage system can only handle so much water at one time. The pop of precipitation overwhelmed the vents and caused murky water to back up on the platforms. 

The same thing happened in suburban Detroit last month when a seven-inch storm submerged an Interstate highway that ran through the city. The highway had been built below street grade to spare surrounding neighborhoods from noise impacts, which meant the low-down streetscape relied on a series of pumps to keep water out. The freak rain event more than overwhelmed those pumps’ capacity, turning the freeway into a sluggish brown river.

Richard Norton, a professor at the University of Michigan who has studied climate change impacts in the Great Lakes, says he was “not surprised at all” by the flooding.

“We have an aging infrastructure that’s breaking down right at the end of its lifecycle,” he says, “and it’s just not geared to handle the amount of inflow that we’re going to start experiencing more. It’s not unlikely that that will happen again.”

Solving the problem of climate change, then, will require not only a transition away from fossil fuels but an enormous transformation of how and where we live. 

The urgent need for this transformation was on display for Shandas just last month, when he and his family rode out the unprecedented Pacific Northwest “heat dome.” Shandas watched in horror as tram cables melted and streets buckled under the sun; like thousands of other people in Portland, he scrambled to find an air conditioner before temperatures reached their peak.

“I hope this is a wake up call—we know this is here,” says Shandas. The heat wave should be a warning to cities like Portland that they need to adapt their physical and human infrastructure to climate change, and sooner rather than later.

He says that the easiest place to start is with education and awareness, something that is often lacking when it comes to heat waves in non-tropical areas; early-warning systems will help prevent desperate last-minute runs on air conditioning units.

In the long term, Shandas says, heat-vulnerable cities should invest in local cooling centers that can give residents a reprieve. The local government should also work to ensure that every neighborhood has adequate shade and green space, which is often lacking in low-income communities—Shandas and his fellow researchers took temperature measurements during the heat-wave and found that

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *